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ABSTRACT: Effective performance of many image processing and
image analysis algorithms is strongly dependent on accurate estima-

tion of noise level. We exploit the simplicity and similarity of statistics
of human anatomy among different subjects to develop new noise

level estimation algorithm for magnetic resonance images of brain.
Objects of the experiment are noise-free 3D brain MRI of 422 sub-
jects. There are 21 slices for each subject. For each slice, total clique

potential (TCP) of Markov random field, computed from local clique
potential, is indexed by 200 different levels of noise. The sample

space is the set of TCP-noise level data of each slice. The random
variable is the set of indices of noise level of TCP in each element of

sample space that is closest in numerical value to TCP measured
from a test MRI slice. Noise level is estimated from the mean and var-

iance of the random variable. We also report the formulation of a gen-
eralized mathematical model describing relationship between TCP
and Rician noise level in brain MRI images. Our proposal can operate

in the absence of signals in the background and significantly reduce
modeling errors inherent in strong parametric assumptions adopted

by some of the current algorithms. VC 2013 Wiley Periodicals, Inc. Int J

Imaging Syst Technol, 23, 304–313, 2013; Published online in Wiley Online

Library (wileyonlinelibrary.com). DOI: 10.1002/ima.22065

Key words: magnetic resonance imaging; single-layer Markov random
field; total clique potential

I. INTRODUCTION

Noise level estimate in magnitude MRI images is required as input

parameter for algorithms developed for the task of noise removal

(Nowak, 1999; Basu et al., 2006; Wang and Zhou, 2006), segmenta-

tion (Zhang et al., 2001; Akselrod-Ballin et al. 2006), registration

(Rohde et al., 2005), quality assessment of functional magnetic reso-

nance images (Sendur et al.; 2005), overall quality assessment of

magnetic resonance imaging systems (McVeigh et al., 1985; Tapio-

vaara and Wagner, 1993), and performance evaluation of noise

removal algorithms (Milindkumar and Deshmukh, 2011).

We reviewed seven contributions (Henkelman, 1986; Brummer

et al., 1993; Murphy et al., 1993; Chang et al., 2005; Sijbers et al.,

2007; Aja-Fernandez et al., 2008; Rajan et al., 2010) in the literature

on estimation of noise levels in brain MRI. Based on chronology, we
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classify them into two classes: the earlier and later groups. In the ear-

liest, referred to as double acquisition method (Murphy et al., 1993),

the same image is acquired twice, aligned, and subtracted. The noise

level is estimated from the standard deviation of the subtracted

image. Other early contributions (Henkelman, 1986; Brummer et al.,

1993; Chang et al., 2005) estimate noise from the background region

where the noise is described by Rayleigh distribution. The first later

contribution (Sijbers et al., 2007) estimates noise level automatically

from the maximum likelihood estimate of partial histogram of noise

signal in the background region. The second in same category (Aja-

Fernandez et al., 2008) estimates noise from local statistics in fore-

ground where pixel intensities contaminated by noise are described

by Gaussian distribution at high signal-to-noise-ratio and Rician at

low signal-to-noise ratio. The third (Rajan et al., 2010) adopts maxi-

mum likelihood estimation principle to estimate the noise level from

the local variance and local skewness of pixels.

The human brain is statistically simple and geometrically similar

(Zhang et al., 2001; Osadebey, 2009). It is composed of only three

major brain structures: white matter (WM), grey matter (GM), and

the ventricular system (VS), each can be distinguished by its clearly

defined range of voxel intensity values (Ashburner and Friston,

2003). Magnetic resonance imaging system reveals strong spatial,

structural, and voxel statistical similarities among corresponding

inter subject MRI slices. These similarity features are exploited in

the design of single-subject MRI-based brain atlases (Evans et al.,

1994; Mazziotta et al., 2001), which are widely acknowledged

powerful tools in the analysis of brain images (Doan et al., 2010).

We exploit this principle further by inferring that, across subjects,

profiles describing variation of MRI slice voxel intensities with dif-

ferent levels of noise degradation will exhibit similar characteristics.

We regard each slice in a 3D MRI volume as similar “coin” or

“dice” in a random experiment. Each “throw” or “roll” is the degrada-

tion of a noise-free MRI slice by 200 different levels of Rician noise.

For each noise level, there is a corresponding outcome, the total clique

potential of Markov random field. A slice is “thrown” 21 times (the

number of slices in an individual subject’s 3D MRI volume) and the

experiment is repeated 422 times (total number of subjects). From the

random experiment, we derive two separate sample spaces. The first is

2D of size ð42232158862Þ3200. Each outcome of the sample space

is TCP energy indexed by noise level for each slice. The second,

derived from the mean of the first sample space, is 1D of size 13200.

Our proposed algorithm is summarized in the schematic diagram

displayed in Figure 1. Given a test image, TCP-noise level data is gen-

erated by degradation with increasing levels of noise, starting from

zero noise level, up to r5200. The data is normalized and the TCP

zero variance energy is determined as the first element of the TCP-

noise level data which corresponds to zero noise level. This prime

energy value is numerically matched separately to each outcome in

the two sample spaces resulting in two noise estimation results. The

first noise estimate is determined from the mean and variance of the

random variable generated from indices of each TCP-noise level data

in the 2D sample space that is closest in numerical value to TCP-noise

level data measured from the test image. The second noise level esti-

mate is the unique index of MRF energy in the 1D sample space that

is closest in numerical value to its counterpart in the test image data.

II. MATERIALS AND METHODS

A. Data for the Random Experiment. The objects of the ran-

dom experiment were original, noise-free, 3 mm T2 weighted axial

3D brain MRI sourced from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (www.adni.loni.ucla.edu). We chose as

much as 422 subjects to satisfy the requirements of the central limit

theorem (Leon-Garcia, 2008; Norman and Streiner, 2008; Walker

and Shostak, 2010) and optimally extract similarities in the voxel sta-

tistics of inter subject brain MRI. The range, mean, and standard

deviation of the subjects’ age were 71–87, 75, and 10, respectively.

ADNI was launched in 2003 by the National Institute on Aging

(NIA), the National Institute of Biomedical Imaging and Bioengin-

eering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies, and non-profit organizations, as 60 mil-

lion dollars, 5-year public private partnership. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological

markers, and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive impairment

(MCI) and early Alzheimer’s disease (AD). Determination of sensi-

tive and specific markers of very early AD progression is intended to

aid researchers and clinicians to develop new treatments and monitor

their effectiveness, as well as lessen the time and cost of clinical tri-

als. The principal investigator of this initiative is Michael W.

Weiner, MD, VA Medical Center and University of California in

San Francisco. ADNI is the result of efforts of many co-investigators

from a broad range of academic institutions and private corporations,

and subjects have been recruited from over 50 sites across the US

and Canada. The initial goal of ADNI was to recruit 800 adults (ages

from 55 to 90) to participate in the research, approximately 200 cog-

nitively normal older individuals to be followed for 3 years, 400

Figure 1. The four steps in the estimation of noise level in 2D brain
MRI. In step 1, TCP-noise level data of the test image is generated.

The data is normalized in step 2 and the first element (TCP zero var-
iance energy) of the normalized data is extracted in step 3. In the esti-

mation of the noise (step 4), the TCP zero variance energy is
separately matched to each of the 1D and 2D sample spaces, S1
and S2, respectively. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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people with MCI to be followed for 3 years, and 200 people with

early AD to be followed for 2 years. For up-to-date information, the

reader is referred to www.adni-info.org.

B. Single-Layered Markov Random Field. An image I is

modeled as a single-layered Markov random field. Unlike the classical

Markov random field theory (Geman and Geman, 1984), the observed

image is the only physical system under consideration and there is no

reference to a prior model. The Markov random field energy U is

dependent on voxel configuration f. The voxel configuration is quan-

tized into local cliques c in a clique system S that describes spatial

coherence or clusters of similar voxels, so that the single-layered Mar-

kov random field energy is the sum of local clique potentials Vc:

Uðf Þ5
X
c2C

Vcðf Þ (1)

For the clique system, we adopt second order neighborhood of

size two with neighboring voxels indexed as ði; i0Þ. In this system,

the Markov random field energy is the sum of potential function con-

tributions from single site and pair-site cliques (Li, 2009):

Ûðf Þ5
X
i2S

a1V1ðfiÞ1
X
i2S

X
i02N

a2V2ðfi; fi0 Þ � Ea1Eb (2)

where a1; a2 are interaction coefficients. The first term Ea referred

to as the data term is the contribution from comparing each voxel

intensity level to itself. The second term Eb, the smoothness term, is

contribution from comparing each voxel intensity to its neighbors.

At each local clique, the contribution of each neighboring voxel to

the clique potential energy is determined according to the

expression:

VcðIðx; yÞÞ5
nr if IðiÞ5Iði0Þ

np otherwise

(
(3)

where nr is the reward and np the penalty for conformity

ðfi5fi0 Þ and violations ðfi 6¼ fi0 Þ of the smoothness constraints,

respectively.

Noise changes the pattern of arrangement of pixels in the image

as demonstrated in Figure 2. There is gradual change in pixel config-

urations for noise levels increasing from r50 in Figure 2a to

r520; r530, and r550 in Figures 2b–2d, respectively. The differ-

ent noise levels result in change in the strength of the clusters within

the image. Thus, different noise levels r give rise to different pixel

configurations and their corresponding levels of energy Ûrðf Þ. The

data term is set to zero because it is a constant for different levels of

noise. This renders the choice of values assigned to a1 and a2 in Eq.

(2) irrelevant, hence for computational convenience, we set a1 and

a2 to an arbitrary value of 1. For different image dimensions, we

define total clique potential per pixel U:

Figure 2. An MRI slice image at various levels of degradation by Rician noise (a) r50, (b) r520, (c) r530, and (d) r550.
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Uðf Þ5 Û

D
5
X
i2S

X
i02N

V2ðfi; fi0 Þ (4)

normalized by D, the product of row and column dimensions of the

image.

It is well known that, in the presence of noise, the pixel intensities

in the foreground of magnitude MRI follow a Rician distribution

(Gravel et al., 2004):

PðMÞ5 M

r2
e2M21A2

2r2 I0

AM

r2

� �
eðMÞ (5)

where A is the image pixel intensity in the absence of noise, M is the

measured pixel intensity, I0 is the modified zeroth order Bessel

function of the first kind, and r denotes the standard deviation of the

Gaussian noise in the real and the imaginary images. In the

background, where there is no image signal, the measured noise

intensity is described by Rayleigh distribution.

PðMÞ5 M

r2
e2M2

2r2 (6)

With the exception of Murphy et al. (1993), most of current algo-

rithms estimate noise from the probability distributions expressed in

Eqs. (5) and (6). In our approach, we relate the potential function U
expressed in Eq. (2) to the signal-to-noise ratio ð A

r2Þ, a variable on the

right hand side of Eq. (5).

X
i2S

V1;rðfiÞ1
X
i2S

X
i02N

V2;rðfi; fi0 Þ �
A

r2
n

� �
(7)

It is noteworthy that the choice of n assigned to each clique is a

strong determinant of the relationship between U and r in Eq. (7). In

Figure 3. TCP energy-noise level curves associated with different image formats and combinations of conformity nr and violations nr of the
smoothness constraints, (a) double precision and ðnr528; np51Þ, (b) 8-bit integer and ðnr528; np51Þ, (c) double precision and ðnr521; np51Þ,
and (d) 8-bit integer and ðnr521; np51Þ. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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general, the relationship between the measured MRF energy of a

MRI slice image and the noise levels can be expressed as:

Urðn; v; rÞ � ðAr22
r Þ (8)

where v is the format of pixels in the image.

C. Simulation. The expression in Eq. (8) is under-constrained.

To determine the model parameters, we made simulation of TCP

energy-noise level relationship using images formatted as 8-bit

unsigned integer and double precision, and for different values of

cost assignments nr; np for conformity and violations of the smooth-

ness constraints, respectively. MRI Images (Figs. 3b and 3d) format-

ted as 8-bit unsigned integer generate data that can be modeled as

quadratic form of polynomial function:

UðrÞ � bkr
k1bk21r

k211…1b1r1b0 (9)

where b is model parameter. They are ill-posed in the sense of Hada-

mard Bertero et al. (1988) because there is no unique MRF energy

for all noise levels. Those that are double precision (Figs. 3a and 3c)

are well-conditioned as they have unique values across the range of

noise levels and can be described by power function:

UðrÞ � arb1c (10)

where a; b; c are model parameters. Based on the simulation results,

MRI images most suitable for our algorithm are those with double

precision and assignments ðnr528; np51Þ.

D. Sample Space. Let W 5 422 be the number of noise-free 3D

brain MRI data from different subjects. From each MRI data, G 5

21 useful slices were extracted to obtain a total of Z 5 GW slice

images where each MRI slice image is indexed by z 2 ½1;Z�. Each

MRI slice image indexed by z is replicated L 2 Z number of times

and each replica is further indexed by a replica number l 2 ½1; L�.
Thus, each MRI slice image Iz;l is indexed by its MRI slice number z
in the database and its replica number l as defined by the set

fðz; lÞ : 1 � z � Z; 1 � l � Lg.
Starting from zero noise level, r50, each copy of MRI slice

image is corrupted by increasing level of Rician noise frl :
r1;r2;r3; . . . ;rLg weighted by the replica index. For each noise

level of a replica image, the total clique potential energy (with and

without background pixels) Uz;l is computed from the sum of local

clique potentials according to Eq. (4) to form a 13L TCP energy-

noise level data fUz;l : Uz;1;Uz;2;Uz;3; . . . ;Uz;Lg. Each element of

the TCP energy-noise level data is normalized by dividing it with the

maximum value of the total clique potential in the TCP energy-noise

level data so that ð21 � Uz;l � 1Þ. For the entire MRI slices in the

database, we obtain a 2D sample space X of normalized variations of

TCP energy Uz;l with noise level rl having dimensions Z3L:

XðxÞ5

U1;1;U1;2;…;U1;L

U2;1;U2;2;…;U2;L

………………

………………

ðUZ;1;UZ;2;…;UZ;L

0
BBBBBBBB@

1
CCCCCCCCA

(11)

where each outcome x of the sample space is each row of the matrix

defined by x5fUz;l : Uz;1;Uz;2;Uz;3; . . . ;Uz;Lg. For notational con-

venience, we adopt same notations for normalized and unnormalized

TCP data.

A second sample space j having 1D of size 13L is derived from the

2D sample space by computing the mean of Eq. (11) along its column.

jðlÞ5 1

Z

XZ

z51

Uz;l 8 l (12)

Using regression analysis, we describe j by a power model:

E5ar̂b1c (13)

ab521:67; af 520:6863 (14)

bb520:6764; bf 520:3663 (15)

cb51:053; cf 51:105 (16)

where ab; af ; bb; bf ; cb; cf are the model parameters for the

foreground (f) and background (b) modes. Plots of the power models

are shown in Figure 4a for the foreground and Figure 4b for the

background modes.

Figure 4. The plots of the proposed generalized mathematical
models for describing the relationship between TCP energy and

noise level in the (a) foreground and (b) background modes. [Color
figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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E. Random Variable. A random variable X is defined as a func-

tion that assigns a real number XðxÞ; x 2 X, to each outcome x in

the sample space X of a random experiment (Leon-Garcia, 2008).

Different random variables can be defined based on this random

experiment. For example, there are a total of T 5 ZL MRF energies

indexed by fL : L < Zg levels of noise. If Z is large enough such

that Z � L, then T MRF energies will be randomly distributed into

each noise level. Thus, the set of all possible MRF energies

fÛ1;l; Û2;l; Û3;l; � � � ; ÛZ;lg, consisting of Z number of elements, that

are indexed by a particular noise level l is a random variable. The

random variable of interest to our proposal is defined as the set con-

taining the indices XzðxÞ5fl1; l2; l3; � � � ; lZg; l 2 ½1;L� of TCP

energy Uz;l in each outcome xz5fUz;l : 1 � z � Z; 1 � l � Lg of

the sample space that is closest in value to the TCP energy measured

from a test TCP image:

fXzðxÞgXz2½1;L�5arg min l2½1;L� : flj8z : jjEt2fUz;lgjjg (17)

F. Estimation of Noise Level. The test image is corrupted with

increasing level fl : 0 � l � 200g of Rician noise, starting from the

first noise level r50. For each noise level, the TCP energy Et:l is

computed according to Eq. (4) to obtain a 13200 TCP energy-noise

level data. The data is normalized by dividing each element with the

maximum TCP energy. The normalized TCP energy Êt;1 measured

from the test image is the first element l 5 1 of the normalized TCP

energy-noise level data.

The normalized TCP energy measured from the test data is matched

separately to each TCP energy-noise level data of an MRI slice in the

1D and 2D sample spaces. In both cases, we find the indices of the

TCP energy in each TCP energy-noise level data that is closest in value

to the normalized TCP energy measured from the test data.

The first matching generates random variable consisting of

sequence of indices XzðxÞ5fl1; l2; l3; � � � ; lZg of same number of ele-

ments Z as the MRI slice images in the sample space giving a total

of Z number of Q unique discrete indices uz 2 ½0; L� each with

Figure 5. Comparative performance evaluation. The plots of the estimated noise levels r̂ versus original noise levels r for four different MRI

acquisitions: (a) T2, (b) T1, (c) PD, and (d) FLAIR. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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frequency of occurrence kq. The estimated level of noise ENV1 is

the mean of the probability distribution.

ENV15h1ð
k1

Z
Þ1h2ð

k2

Z
Þ1h3ð

k3

Z
Þ…1hZð

kQ

D
Þ21 (18)

The deviation from the mean is:

ENV1std5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXQ

q51

ðhq2ENV1Þ2 kq

Z

� �vuut (19)

so that the estimate for the upper and lower limits of the noise level

is ENV11ENV1std and ENV12ENV1std , respectively.

The second matching generates only a single and unique index

number ENV2 because the matching is with a single MRI energy-

noise level data.

ENV25min l2½1;L�jjÊt;12jljj21 (20)

The subtraction of unity in both Eqs. (18) and (20) is rescaling of

the indices to account for index of noise level associated with Rician

noise of zero variance.

The accuracy of the estimated noise level is strongly dependent

on Êt. To reduce error our algorithm monitors, the smoothness of the

TCP energy-noise level data generated from the test image by com-

puting its coefficient of variation fCvjCv 2 Zg, defined as the ratio

of the standard deviation r to its mean value l, rounded to the near-

est integer (Rosner, 2006).

Cv5
r
l

� �
(21)

Based on trials of many test images, we set threshold value of

Tv523 for Cv. Below this threshold, the noise is estimated using the

Figure 6. Comparative performance evaluation. The plots of the quality measures for four different MRI acquisitions: (a) T2, (b) T1, (c) PD, and

(d) FLAIR. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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first element Êt;1 of the normalized test data as input parameter, and

above it, the data is first fitted with a power model followed by

updating Êt according to the following operation

Et;1 ! Et;N ; N5ðTv2CvÞD (22)

where N, an integer, is the index of the fitted model that is now

assumed as the updated MRF energy computed from the test image

and D is a user-defined correction factor, in the range ð0 � D � 1Þ,
that takes into consideration the complexity of the features in the test

image. In our case, we set D51 because each MRI slices of individ-

ual subjects in the database were free of noise and had undergone

intensity correction.

III. RESULTS

A. Data for Evaluation. The test data are four different acquisi-

tion modes of real MRI data made available by NeuroRx research

Inc., a Montreal based clinical research organization. They are T1

relaxation time, T2 relaxation time, and proton density (PD) as well

as fluid attenuated inversion recovery (FLAIR). Each acquisition

consists of thirty eight 3 mm axial MRI slices.

B. Comparative Performance Evaluation Results. The

two methods of estimating noise in our proposed algorithm were

denoted ENV1 and ENV2. They were compared alongside five cur-

rent algorithms. Brummer et al. (1993) BRU, Chang et al. (2005)

CHA, Sijbers et al. 2007 SJI, Aja-Fernandez et al. (2008) AJA, and

Rajan et al. (2010) RAJ. Each slice in the real MRI data was modi-

fied to follow Rician noise distribution ranging from ð0 � r � 40Þ.
The artificially induced noise level was based on assumption that the

magnitude MRI was acquired from real and imaginary data having

equal standard deviations r. For each original noise level r, the esti-

mate level of noise r̂ from an algorithm is determined from the

mean value of noise level estimated for all individual slices in the

volume data. The algorithms were compared based on four evalua-

tion parameters. The plot of estimated noise level versus original

noise level is displayed in Figure 5. The corresponding plots for qual-

ity measure, mean absolute error, and root mean square error are dis-

played in Figures 6–8, respectively.

IV. DISCUSSION

The algorithms were evaluated on images with both background

and foreground signals. Three algorithms BRU, CHA, and SJI

Figure 7. Comparative performance evaluation. The plots of the mean absolute error for four different MRI acquisitions: (a) T2, (b) T1, (c) PD,
and (d) FLAIR. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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are designed to operate on images for which the background sig-

nal is clearly segmented from the foreground, and are therefore

not optimal in performance in the presence of only foreground or

limited background signals that are typical outputs of modern

MRI scanners and MRI images with small field of view Rajan

et al. (2010). Our proposal can be ranked alongside AJA and RAJ

which can operate with and without background signals. Another

state-of-the-art algorithm which can operate in the presence or

absence of background was proposed by Coupe et al. (2010), but

it is designed only for 3D MRI volume data. Our proposal can be

adapted to measure noise level in 3D volume data by measuring

noise level in each slice and averaging by the total number of sli-

ces in the volume. The time it takes to process an MRI slice is

dependent on the mode adopted for estimation of noise level. On a

computer having 3GB RAM and 1.65 GHz processor, the second

approach ENV2 can estimate noise level in an MRI slice in less

than 10 s compared to ENV1 that takes less than 30 s because it

makes reference to a database.

The data points in the plots of estimated noise levels versus origi-

nal noise levels in Figure 5 and quality measure in Figure 6 are

strongly clustered at significant levels of noise. This indicates that all

the algorithms under consideration are comparable to each other and

that our proposal exhibit state-of-the-art characteristics of current

algorithms. However, the distinction in their performances can be

deduced from the plots of mean absolute errors and root mean square

errors displayed in Figures 7 and 8, respectively.

The second approach in our proposal ENV2 demonstrates supe-

rior performance in terms of mean absolute error ð� 0:08Þ on T2

(Fig. 7a) and FLAIR (Fig. 7d) MRI images. In the same evaluation,

parameter AJA was the best algorithm with ð� 0:07Þ for T1 (Fig.

7b) and PD (Fig. 7c) images. It is closely followed by RAJ and our

proposal ENV2.

Again our ENV2 stands out clearly as the best algorithm based

on root mean square error for T1 (Fig. 8b), ð� 0:02Þ and T2 (Fig.

8a), ð� 0:2Þ images. Closely behind is our first proposal ENV1,

AJA, and RAJ. The algorithm AJA is the best for PD images

Figure 8. Comparative performance evaluation. The plots of the root mean square error for four different MRI acquisitions: (a) T2, (b) T1, (c)

PD, and (d) FLAIR. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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ð� 0:2Þ closely followed by our two proposals ENV1 and ENV2

and RAJ. As can be seen in (Fig. 8d) for FLAIR images, the first

approach in our proposal ENV1 and AJA show the same level of

best performance ð� 0:2Þ and closely followed by our second pro-

posal and RAJ.

V. CONCLUSION

We exploit the simplicity and similarity of statistics of human anat-

omy for different subjects in a random experiment and hereby pro-

pose a two-in-one application-specific algorithm that adopts the total

clique potential of Markov random field energy as metric for estima-

tion of noise variance in brain MRI. In the first approach, MRF

energy is a variable in a random experiment. The second formulates

the MRF energy-noise level relationship as a mathematical model.

Both approaches are fast, accurate, and efficient in the estimation of

noise variance. It is invariant to the presence or absence of back-

ground features in an image and is potentially immune to the model-

ing errors inherent in some of the current state-of-the-art algorithms.
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